Payne-polya-weinberger, Hile-protter and Yang’s Inequalities for Dirichlet Laplace Eigenvalues on Integer Lattices

نویسندگان

  • BOBO HUA
  • YONG LIN
  • YANHUI SU
چکیده

In this paper, we prove some analogues of Payne-Polya-Weinberger, HileProtter and Yang’s inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice Z. This partially answers a question posed by Chung and Oden [CO00].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Payne-polya-weinberger Type Inequalities for Eigenvalues of Nonelliptic Operators

Let denote the Laplacian in the Euclidean space. The classic upper estimates, independent of the domain, for the gaps of eigenvalues of − , (− )2 and (− )k(k ≥ 3) were studied extensively by many mathematicians, cf. Payne, Polya and Weinberger [16], Hile and Yeh [10], Chen and Qian [2], Guo [8] etc.. The asymptotic behaviors of eigenvalues for degenerate elliptic operators were considered by Be...

متن کامل

Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold

We establish inequalities for the eigenvalues of the sub-Laplace operator associated with a pseudo-Hermitian structure on a strictly pseudoconvex CR manifold. Our inequalities extend those obtained by Niu and Zhang [26] for the Dirichlet eigenvalues of the sub-Laplacian on a bounded domain in the Heisenberg group and are in the spirit of the well known Payne-Pólya-Weinberger and Yang universal ...

متن کامل

Commutator Bounds for Eigenvalues, with Applications to Spectral Geometry

We prove a purely algebraic version of an eigenvalue inequality of Hile and Protter, and derive corollaries bounding diierences of eigenvalues of Laplace{ Beltrami operators on manifolds. We signiicantly improve earlier bounds of

متن کامل

Inequalities between Dirichlet and Neumann Eigenvalues on the Heisenberg Group

Universal eigenvalue inequalities are a classical topic in the spectral theory of differential operators. Most relevant to our work here are comparison theorems between the Dirichlet and Neumann eigenvalues λj(−∆Ω ) and λj(−∆Ω ), j ∈ N, of the Laplacian in a smooth, bounded domain Ω ⊂ R. Note that λj(−∆Ω ) ≤ λj(−∆Ω ) for all j ∈ N by the variational characterization of eigenvalues. This trivial...

متن کامل

A Second Eigenvalue Bound for the Dirichlet Schrödinger Operator

Let λi(Ω, V ) be the ith eigenvalue of the Schrödinger operator with Dirichlet boundary conditions on a bounded domain Ω ⊂ R and with the positive potential V . Following the spirit of the Payne-Pólya-Weinberger conjecture and under some convexity assumptions on the spherically rearranged potential V⋆, we prove that λ2(Ω, V ) ≤ λ2(S1, V⋆). Here S1 denotes the ball, centered at the origin, that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017